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ABSTRACT Future spectrum sharing rules very likely will be based on device environment: indoors or
outdoors. For example, the 6 GHz rules created different power regimes for unlicensed devices to protect
incumbents: ‘‘indoor’’ devices, subject to lower transmit powers but not required to access an Automatic
Frequency Control database to obtain permission to use a channel, and ‘‘outdoor’’ devices, allowed to
transmit at higher power but required to do so to determine channel availability. However, since there are no
reliable means of determining if a wireless device is indoors or outdoors, other restrictions were mandated:
reduced power for client devices and indoor access points that cannot be battery powered, have detachable
antennas or be weatherized. These constraints lead to sub-optimal spectrum usage and potential for misuse.
Hence, there is a need for robust identification of device environments to enable spectrum sharing. In this
paper we study automatic indoor/outdoor classification based on the radio frequency (RF) environment
experienced by a device. Using a custom Android app, we first create a labeled data set of a number of
parameters of Wi-Fi and cellular signals in various indoor and outdoor environments, and then evaluate the
classification performance of various machine learning (ML) models on this data set. We find that tree-
based ensemble ML models can achieve greater than 99% test accuracy and F1-Score, thus allowing devices
to self-identify their environment and adapt their transmit power accordingly.

INDEX TERMS 5G, Wi-Fi, indoor, outdoor, classification, machine learning.

I. INTRODUCTION AND MOTIVATION
As the current generation of cellular (5G) and Wi-Fi
(802.11ax) networks begin to be widely deployed, it is
becoming increasingly clear that the next generation of
wireless systems will largely be deployed in spectrum that
is shared, not only between cellular and Wi-Fi but also
with various incumbents such as federal radar systems, fixed
microwave links, satellite providers, weather satellites and
broadcast auxiliary services (BAS). While mmWave and
higher frequencies, into the terahertz range, offer the widest
bandwidths and fewer incumbents, mid-band spectrum
(1 GHz – 10 GHz) will always remain the workhorse
of wireless networks due to the favorable propagation
characteristics that balance range with bandwidth. This band
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is also the most crowded. The Federal Communications
Commission (FCC) in the U.S recently created rules for
the 6 GHz band that would allow unlicensed services to
coexist with existing incumbents in the band, mainly high-
power fixed microwave links and lower power broadcast
auxiliary services [1]. It is expected that in addition to Wi-
Fi, this band will also be used by cellular systems deploying
5G NR-U [2] similar to the use of the 5 GHz band by
LAA [3]. Fig. 1 depicts the deployment scenario in this band,
with a mix of indoor and outdoor devices using Wi-Fi and
5G NR-U with various power levels.
Need for automatic and robust indoor/outdoor classifi-

cation: The 6 GHz rules [1] create two different power
regimes for unlicensed devices: ‘‘indoor’’ devices that are
subject to lower transmit powers (Low Power Indoors or
LPI) but are not required to access an Automatic Frequency
Control (AFC) database to obtain permission to use a channel,
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FIGURE 1. Deployment scenario of indoor and outdoor devices in 6 GHz.

and ‘‘outdoor’’ devices, that can transmit at a higher power
but need to consult an AFC prior to using a channel to ensure
that the device is not in the exclusion zone for the desired
channel, as shown in Fig. 1. Very Low Power (VLP) devices
shown in Fig. 1 have yet to be authorized in the US but are
permitted in other regulatory regimes: these devices can be
anywhere, do not need to consult an AFC but will transmit at
lower power than LPI devices.

Since there are no reliable means for determining if a
wireless device is indoors or outdoors, other restrictions
were mandated for LPI: indoor access points (APs) could
not be battery powered, have detachable antennas or a
weatherized exterior, and mobile client devices connected
to an indoor AP were subject to a 6 dB lower transmit
power constraint (proposed by FCC) compared to the indoor
AP since they could be outdoors and pose an interference
threat to incumbents if they were to transmit at the same
power as an indoor device. These constraints clearly lead
to sub-optimal spectrum usage: for example, client devices
even if they are indoors have to transmit at a lower power,
client devices cannot transmit directly to each other without
connecting through an AP and APs being unable to be battery
powered can lead to a less resilient network.Hence, the ability
of a wireless device to reliably detect its own environment
allows device power allocations that do not need to be
constrained by external factors and can lead to improved
spectrum utilization and increased resilience.

The fundamental premise of our approach in this paper is
simple: just as the indoor visual environment is quite different
from the outdoor visual environment, the same is true for the
radio frequency (RF) environment as well. RF transmissions
permeate our surroundings: television (TV), radio (AM/FM),
cellular and Wi-Fi being the most pervasive. The most
obvious difference between indoor and outdoor environ-
ments is the signal strength: transmissions from outdoor
sources such as Global Positioning System (GPS) satellites,
TV transmitters, cellular towers and radio stations will be
received at higher power outdoors while predominantly
indoor transmitters such as Wi-Fi will have higher signal
strength indoors. There are other differences as well: the

number of Wi-Fi APs and cellular base-stations (BSs)
received by a device such as a smartphone will also depend
on the environment. Today, it is possible to extract detailed
information on both signal strength and number ofWi-Fi APs
and cellular BSs received by a smartphone, over frequency
bands from the unlicensed 2.4 GHz and 5 GHz bands to the
low (< 1 GHz), mid (1 GHz - 6 GHz) and high (> 24 GHz)
cellular bands, directly, using apps. We posit that such a data-
set, collected in labeled indoor and outdoor environments,
across a wide variety of frequency bands and signal types,
can be used to train Machine Learning (ML) models that can
perform robust indoor/outdoor classification, thus leading
to improved spectrum usage, incumbent protection and
resilience, not only in 6 GHz, but also in future bands such as
the 12 GHz satellite band where sharing with indoor devices
is being considered [4].

The contributions of the paper are as follows: (i) we
developed an Android app and collected a large, labeled data-
set of Wi-Fi, 4G LTE, and 5G NR measurements in various
indoor and outdoor environments: such a data-set does not
exist today and will be made openly available to other
researchers; (ii) we have evaluated various ML algorithms
on this data set and shown classification accuracy of 99%;
and (iii) we evaluated the ML models which were already
trained on real data collected from smartphone. We believe
that this is the first comprehensive evaluation of the efficacy
of ML in solving the indoor/outdoor classification problem
solely using RF data.

The paper is organized as follows. Section II provides a
brief summary of literature on indoor/outdoor classification,
Section III describes the advantages of signal in terms of
Wi-Fi and Cellular network, Section IV describes the app,
our data collection methodologies and pre-processing proce-
dures, Section V presents a detailed performance evaluation
of different ML algorithms, Section VI presents performance
results from specific test scenarios and conclusions and future
research directions are presented in Section VII.

II. RELATED WORK IN INDOOR/OUTDOOR
CLASSIFICATION
As mentioned in the previous section, indoor and outdoor
environments are visually very different. Hence, the
indoor/outdoor classification problem has been studied quite
extensively in the image processing literature, mainly to
perform scene analysis for various applications. There have
also been a few contributions in using GPS and limited
signal information from smartphones. Additionally, a number
of recent studies [5], [6] have investigated the use of ML,
including Convolutional Neural Networks (CNNs) for RF
Fingerprinting, but the objective is quite different from the
indoor/outdoor classification problem we address in our
work.

A. INDOOR/OUTDOOR CLASSIFICATION BASED ON
IMAGES
Scene classification in general is a well studied area and
there has been some specific work on indoor/outdoor
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classification in content-based image retrieval systems [7].
In [8], the author classifies scenes as indoor versus outdoor
using relevant low level features such as color and texture
which help to improve the classification performance. The
proposed method uses statistical features computed from
Hue, Saturation and Value (HSV) as color features, Discrete
Cosine Transform (DCT) coefficients as texture feature and
entropy computed with Ultra Violet (UV). In [9], the authors
present a framework to benchmark indoor/outdoor scene
classification and conclude that it is not possible to classify
the images accurately within the database they use. The
principal drawback of using image-based classification in the
scenario of interest in this paper is that a camera is required
which adds to the cost and complexity.

B. INDOOR/OUTDOOR CLASSIFICATION BASED ON GPS
ML algorithms were used along with GPS data to perform
indoor/outdoor classification in [10]–[12], for applications
such as activity classification of indoor/outdoor activities.
Data collected from a certain number of GPS satellites,
using the GPS sensor on mobile devices is used to train
classification models. The performance of such approaches
is severely limited by the reduced signal levels and accuracy
of GPS indoors and in urban environments with tall buildings.

C. INDOOR/OUTDOOR CLASSIFICATION BASED
ON SMARTPHONES
Fast and accurate detection of the physical location of a
mobile device is crucial for many new smart services in the
current 5G and future mobile networks. This information can
be used by mobile operators to optimize their network to
provide better quality of service (QoS) to their customers.
For example, Femto cells deployed indoors need to quickly
determine what the user-environment is in order to reduce
hand-over delay and avoid ping-pong effects [13]–[15].
In [16], an ensemble learning scheme for indoor-outdoor
classification is proposed for a specific urban area consisting
of five malls, based on the cellular data captured in
a commercial LTE network. The variables are extracted
by network key performance indicators (KPIs) and radio
propagation knowledge. Based on these main variables, the
Gini metric is used to build the classification and regression
trees. Only cellular signal strengths are used in the study
and data collection is only on a particular LTE frequency
band: 2.1 GHz.

Thus, the existing literature on using RF signals captured
over a wide range of frequencies spanning Wi-Fi and cellular
in all available bands, includingmmWave, for indoor/outdoor
classification is extremely sparse. One of the main reasons is
the lack of sufficiently large and diverse data-sets that can be
used by ML algorithms. With the availability of new bands
on smartphones and apps that can retrieve the data easily
for analysis, we aim to address this deficiency by creating
large data-sets and evaluating ML algorithms to solve this
extremely relevant classification problem.

III. RATIONALE FOR USING WI-FI AND CELLULAR
SIGNALS FOR ENVIRONMENT CLASSIFICATION
While there are a number of different RF signals that could
be used to classify environments, such as television, AM/FM
radio, Bluetooth, ultra-wideband (UWB) etc., we choose to
use Wi-Fi and cellular signals primarily due to their ubiquity,
globally, indoors and outdoors, and their support in most
consumer devices. For example, Bluetooth and UWB are not
supported in all mobile devices and are only available in
limited locations. We leverage the following characteristics
of cellular and Wi-Fi signals in building the classifiers:

A. DEPLOYMENT
Cellular networks are usually deployed over licensed fre-
quencies by network operators in a plannedmanner, outdoors,
on a wide range of frequencies in the low (< 1 GHz), mid
(1 - 6 GHz) and high (> 24 GHz) bands, with different
propagation characteristics. For example the high bands do
not propagate very far and outdoor-to-indoor-penetration is
poor: hence these bands are rarely encountered in an indoor
environment. On the other hand, Wi-Fi APs are mostly
deployed indoors, with limited outdoor deployments, in the
2.4 GHz and 5 GHz bands, with 6 GHz Wi-Fi just beginning
to be deployed. Further, the transmission power of both
cellular and Wi-Fi signals vary depending on the bands they
are deployed in, which again leads to differences in received
signal strengths indoors and outdoors. Hence, these features
can be used byML classifiers to classify device environments
as will be described later.

B. PROTOCOL
Cellular and Wi-Fi systems have different medium access
control (MAC) protocols. Cellular networks rely on a
centralized protocol that utilizes strict scheduling to serve
multiple concurrent users whereasWi-Fi uses a listen-before-
talk (LBT) protocol to avoid collisions between users. In both
cases however, synchronization signals are continually trans-
mitted even in the absence of any active, connected devices.
Both Wi-Fi and Cellular networks periodically transmit
signals about every 100 ms, i.e., Wi-Fi beacon packets and
LTE/NR synchronization signals on the Physical Downlink
Control Channel (PDCCH). The signals strengths of these
reference signals are continuously being measured by the
modem in the phone and are available over the Android APIs.

Thus, our classification methodology is based around
extracting the signal strength measurements of all Wi-Fi APs
and cellular base-stations, combining them with the GPS
signal and crafting features to be used by ML classifiers as
will be described in the following sections.

IV. DATA COLLECTION METHODOLOGY
A. APP FEATURES
We developed an easy-to-use Android app, SigCap [17],
that passively collects GPS, Wi-Fi, 4G and 5G information
using the Android API, without requiring root access or
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TABLE 1. Parameters collected by the android app.

running bandwidth hungry speed-tests. Table 1 shows the
parameters collected every 10 secs, which is the minimum
interval allowed by the API to conserve power. Depending on
the phone capabilities and the cellular deployment, the app
collects the listed data on all deployed 4G bands including
the unlicensed 5 GHz (Band 46) and Citizen Broadband
Radio Service (CBRS, Band 48) and on all 5G bands
including mmWave. Each data record collected consists
of the following parameters: (i) time-stamp; (ii) location
(GPS latitude and longitude) (iii) GPS accuracy1; (iv) Wi-
Fi information as listed in Table 1 for every AP the device
can receive a beacon frame from on 2.4 GHz and 5 GHz,
even if the device is not associated with any of them; (v) 4G
LTE cell information as listed in Table 1 for every cell it
can receive, not just the one it is connected to: this includes
secondary channels from the same BS and channels from
neighboring BSs and (vi) 5G NR information as listed for
only the frequency band the phone is connected to: either FR1
(< 6 GHz)) or FR2 (> 6 GHz), i.e. information on secondary
and neighboring 5G NR cells is not available in either band.

B. APP USAGE AND DATA PRE-PROCESSING
Once the data has been collected and saved on the phone,
it can be exported as JavaScript Object Notation (JSON) files,
which then converted to Comma Separated Values (CSV)
format and used as inputs to the ML models. A JSON record
at a given timestamp is displayed as a single row containing
the measurements from multiple Wi-Fi APs and cellular
BSs, both 4G and 5G. Each row contains multiple columns:
location label, GPS accuracy, date-time information, Wi-Fi
APs information on 2.4 & 5 GHz, 4G information separated
by band and 5G information. For each frequency range
(2.4 or 5 GHz), the Wi-Fi columns are further separated into
the following: number of APs, average RSSI, and list of
RSSI from highest to lowest. Similarly, the band-categorized
4G columns contain further details: number of cells and the
average and list of signal powers (RSRP, RSRQ, and RSSI)
sorted in descending order.

We have incorporated an user-entered category field in
the app prior to exporting the captured data with the
following options: unknown, indoor, outdoor, mostly indoor
and mostly outdoor. Unknown, indoor, and outdoor labels

1The GPS accuracy is defined as the horizontal radius in meters of 68%
confidence. In other words, an accuracy of x meter defines a circle with
x meters radius which there is a 68% probability that the true location is
inside it.

TABLE 2. Summary of data collected.

are self-descriptive, while mostly indoor and mostly outdoor
labels are used when users transitioned between indoors and
outdoors during the measurement run.2 This helps us collect
labeled data in various environments. For the purposes of the
work reported in this paper, we only used data labeled as
‘‘indoor’’ or ‘‘outdoor’’ for training and testing the models.

While the calculation of the parameters collected, espe-
cially RSSI, RSRP and RSRQ, are explicitly defined in the
standards, the values themselves depend on the implementa-
tion on the modem chip in the phone as well as the receiving
antennas and front-ends. Hence, it is important to collect
data with a wide range of devices and on various operator
deployments. We have used several Android phones in our
data collection effort: Google Pixel 2, Google Pixel 3, Google
Pixel 5, Samsung Galaxy S9, Samsung Galaxy S20, Samsung
Galaxy S21 and Motorola Edge+, each equipped with a Sub-
scriber Identification Module (SIM) of a different operator.
Outdoor measurements were collected while walking, biking,
driving a car, and riding on trains in urban, suburban and rural
environments. Indoor measurements were made in single-
family houses, apartment buildings, offices, indoor malls and
stores. Both indoor and outdoormeasurements were collected
in the various places described in three different geographical
locations: the number of data records from each location is
summarized in Table. 2. It should be noted here that the
number and diversity of outdoor environments captured was
greater than indoor, since access to most indoor places was
restricted due to shut-downs in the past year.

The data-set thus collected is quite large: 18 GB. Depend-
ing on the measurement environment, a single data record can
contain information on 100s of Wi-Fi APs and many 10s of
LTE cells: this is common in dense urban areas. Thus, the
raw data cannot be used directly in a ML classifier since the

2Since some of our data was collected by other users who we shared
SigCap with, we wanted to make sure that users labeled the data collection
environment correctly. However, these two labels lead to high error due to
the ambiguity, thus they were not used in our analysis
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FIGURE 2. Correlation analysis: LTE (Low + Mid) RSSI and RSRP features.

TABLE 3. Features used in statistical analysis.

number of inputs per data recordwould varywith each record.
We pre-process the data as follows:
Step 1: the data is cleaned by removing any record with an

invalid entry in any field. Null entries, NaN (Not a Number)
entries and RSRP, RSRQ and RSSI values that do not fall
in the specified range3 for these parameters are examples of
invalid entries. Invalid entries are represented by a very large
number, i.e., −200 so the ML algorithm will not be affected
by these data points.
Step 2: in order to create a fixed number of features

irrespective of the length of a data record, we extract the
features listed in Table 3 for each record. A single record
contains information from multiple Wi-Fi and LTE cells,
the number of which varies from one record to the next.
In order to have the same number of features for each record,
we calculate aggregate values as feature inputs to the ML
model as follows. As shown in Table 3 we first classify the
signals into bands: Wi-Fi RSSI in 2.4 GHz and 5 GHz, LTE
RSRP and RSRQ in low- and mid-band and NR RSRP and

3For 2.4 and 5 GHz Wi-Fi, RSSI varies in the range of −100 dbm to
−20 dBm. In LTE, low-band RSRP varies in the range of −150 dBm to
−35 dBm andmid-bandRSRP varies in the range of−130 dBm to−50 dBm.
Similarly, in NR FR1 RSRP varies in the range of −120 dBm to −60 dBm
and in NR FR2 RSRP varies in the range of −120 dBm to −70 dBm. The
RSRQ is in the range of −20 to −5

RSRQ in FR1 and FR2. Then, all signal values detected in
a band are aggregated using 5 functions: mean, min, max,
standard deviation, and count, thus removing the variability
between records. This pre-processing ensures that the number
of input features for each record is the the same irrespective of
the number of actual Wi-Fi and LTE signals detected. 5G NR
deployments do not aggregate bands today: thus aggregation
is not necessary for NR FR1 and FR2 data. However this may
change in future 5G deployments. Hence, we have 6 signal
categories (i.e., Wi-Fi 2.4 GHz RSSI, Wi-Fi 5 GHz RSSI,
LTE Low RSRP, LTE Mid RSRP, LTE Low RSRQ, LTE
Mid RSRQ) with 5 features each, and 4 NR categories(i.e.,
NR FR1 RSRP, NR FR2 RSRP, NR FR1 RSRQ, NR FR2
RSRQ) with 2 features each, bringing the total number of
features to 38. The 38 features in Table 3 combined with
‘‘GPS Accuracy’’ results in a set of 39 features for use with
classification algorithms.

V. ML ALGORITHM EVALUATION
Before proceeding to ML classification, we performed
univariate analysis on the various features to evaluate the
statistical differences between indoor and outdoor data. Other
than the LTE RSSI, we have used all the other Wi-Fi and
cellular features (as shown in Table 3), as input to the ML
model. This is becausewe observed in the correlation analysis
that the LTE (Low + Mid) RSSI and RSRP are highly
correlated, as shown in Fig. 2, since RSSI is a function of
RSRP and RSRQ and hence, the LTE RSRP feature alone
is sufficient for further ML analysis. Similarly, from Fig. 3,
we see that LTE RSRP and RSRQ are not highly correlated
because of the step-function behavior in the RSRQ range
(i.e., 0 dB (highest signal quality) to −20 dB (low signal
quality)). This is also expected since RSRQ is a measure
of interference due to neighboring cells while RSRP is
measured on the primary cell. Hence, we include RSRQ
as a feature in our further ML analysis. Figs. 4a, 4b, 5a,
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FIGURE 3. Correlation analysis: LTE (Low + Mid) RSRQ and RSRP features.

FIGURE 4. Univariate analysis on Wi-Fi, LTE and NR features.

and 5b show the distribution of Wi-Fi 2.4 GHz & 5 GHz
AP count and mean RSSI4 indoors and outdoors. We observe

4We also analyzed the univariate performance in terms of min, max, and
standard deviation of the RSSI values. However, due to space limitation,
we show only the count and mean.

clear differences between indoors and outdoors in the Wi-Fi
2.4 GHz AP count and Wi-Fi 5 GHz RSSI mean. Similarly,
Figs. 4c, 4d, 5c, and 5d show the LTE Low and Mid band
count and mean RSRP distributions. Once again, we observe
clear differences between the distributions of indoor and
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FIGURE 5. Univariate distribution analysis on Wi-Fi, LTE and NR features.

outdoor data. Figs. 4e, 4f, 5e, and 5f, show the count andmean
RSRP for 5G NR deployment in FR1 and FR2. We have not
observed any deployment of 5G NR in the FR2 band indoors
due to the penetration loss of mmWave signals from outdoors
to indoors. Similarly, we analyzed the GPS accuracy and we
observe difference between the indoor and outdoors as shown
in Fig. 6.

This preliminary statistical analysis indicates that these
39 features can be used in classical ML models to distinguish
between indoor and outdoor environments reliably. We tested
various ML models in the standard way: the data collected is
divided into a training set containing 75% and test set con-
taining 25% of the data. We use the ML models implemented
in Scikit Learn [18], [19] with default parameters value.

A. ML ALGORITHMS
The indoor/outdoor classification problem can be addressed
by a number of well-know ML classifiers. We evaluated the
following:

• Naive Bayes (NB/NBayes): A classification technique
based on Bayes’ theorem [20] with an assumption of
independence between features.

• Linear Discriminant Analysis (LDA): LDA is a dimen-
sionality reduction technique and is mainly used as a

FIGURE 6. Univariate analysis on GPS accuracy.

pre-processing step in ML. LDA is also used for binary
classification problems

• AdaBoost: AdaBoost is one of the first boosting
algorithms to be adapted. It helps to combine multiple
‘‘weak classifiers’’ into a single ‘‘strong classifier’’.
It works by putting more weight on difficult to classify
instances and less on those already classified.

• Decision Tree (DecTree): The data is split into two or
more homogeneous sets, based on the most significant
features to make as distinct groups as possible.

• Extra Trees (ExTree): ExTree is an ensemble ML
algorithm that uses the predictions (majority voting)
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TABLE 4. F1-score of different ML algorithms on test data for indoor/outdoor classification.

TABLE 5. Random forest 10-Fold cross validation.

from many decision trees trained on the training dataset
for classification.

• XGBoost: This algorithm is an extension of gradient
boosted decision trees [21] and is designed to improve
speed and performance.

• Random Forest (RF/RForest): RF is an ensemble of
decision trees. In order to classify a new observation
based on features, RF applies majority voting on the
classification given by each decision tree. The difference
between RF and ExTree is in the way they select the cut
points to split the nodes in the decision trees. RF chooses
the optimal split, whereas ExTree chooses it randomly.

B. PERFORMANCE METRICS [22]
The following standard metrics were used to evaluate the
performance of the above algorithms:
• Accuracy: Percentage of correctly predicted records
(Indoor and Outdoor Combined).

• True Positive Rate (TPR)/Recall: Percentage of correctly
predicted outdoor records.

• True Negative Rate (TNR): Percentage of correctly
predicted indoor records.

• Precision: Percentage of correctly identified records
among the ones which are classified as outdoor.

• F1-Score: Harmonic mean of precision and recall.
• Area under the curve (AUC): The AUC is the measure of
the ability of a classifier to distinguish between classes.

C. PERFORMANCE OF ML MODELS
We evaluated the classification performance of various ML
algorithms, using different combinations of features on
the collected data. Our results, using several standard ML
algorithms implemented using Scikit-learn, are shown in
Table 4, where the F1-score of different algorithms tested
with different combinations of feature sets is shown. It is clear
that as more frequency bands are added to the feature set, the
F1-score increases, especially for the tree-based models such
as AdaBoost, Decision Tree, XGBoost, ExTree, and Random
Forest. We also observed that only Wi-Fi and LTE features

are sufficient to get good classification accuracy for indoor
as well as outdoor, but adding the NR and GPS accuracy
features lead to slight improvement in AdaBoost, XGBoost,
and ExTree (as shown in Table 4).

Fig. 7 shows the GPS accuracy performance of different
ML models on the test data. The XGBoost and Random
Forest algorithms guarantee 82.6% and 80.4% accuracy.
From the observation, it is clear that we cannot reliably
detect indoor and outdoor environments with only GPS
accuracy feature. Fig. 8 shows the performance of different
ML models on the test data when all 39 features are
used. The NB algorithm performs poorly i.e., 43%, when
all features are used. Since NB assumes that all the
features are uncorrelated, the prediction probability reduces
significantly even if one of the features has awrong likelihood
probability. XGBoost, ExTree, and Random Forest models
consistently outperformed other models for all the feature
combinations (see Table 4). Especially when all features are
used, XGBoost, ExTree, and Random Forest models have
above 99% F1-score. This high F1-score also indicates that
the ensemble ML models are making accurate predictions
for indoor as well as outdoor records (despite the data
imbalance between the two classes). We also performed 10-
fold cross-validation for the Random Forest model, and the
corresponding results are shown in Table 5. It shows that
the Random Forest model consistently performs above 99%
accuracy and F1-score on all the folds. Since the accuracy
and the F1-score from the models are already high, hyper
parameter tuning of these models is not needed. Hence,
a separate validation set is not used.

1) ML EXPLAINABILITY STUDY
In this section, we study the explainability of the best
performing ML model, i.e., Random Forest, using the
SHAP (SHapley Additive exPlanations [23], [24]) package in
Python. The SHAP package helps visualize the importance
of the input features in classifying a given record as indoor
or outdoor. Fig. 9 shows the SHAP values for the features
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FIGURE 7. Performance of ML models using only the GPS accuracy feature in terms of Accuracy, TPR, TNR, Precision, F1-Score and AUC.

FIGURE 8. Performance of ML models using all the 39 features in terms of Accuracy, TPR, TNR, Precision, F1-Score and AUC.

FIGURE 9. Random forest explainability: Correct indoor prediction.

FIGURE 10. Random forest explainability: Correct outdoor prediction.

of a record which was correctly classified as outdoor by the
RF model. The red and blue arrows indicate the features
that push the model towards predicting the record as outdoor
and indoor, respectively. The length of an arrow indicates
the importance of the feature in deciding the prediction.
For example, in Fig. 9, the feature Wi-Fi 5GHz RSSI
mean (−84 dBm) is the most important feature to make
the model classify the record as outdoor. This behavior is

consistent with what we observed from univariate analysis
(see Fig. 4b and Fig. 5b): a lower value for Wi-Fi 5GHz RSSI
mean indicates that the record is most likely from outdoor.
Similarly, Fig. 10 shows the SHAP values for the features of
a record which was correctly classified as indoor by the RF
model.

Fig. 11 shows the summary of the SHAP values for
100 test records. The points which are to the left and right
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FIGURE 11. Random forest: Feature importance.

TABLE 6. Performance of random forest in classifying TacoBell and
WholeFood.

of the zero line indicates the importance of the features
in making indoor and outdoor prediction, respectively. The
color of a point indicates the feature value (red indicates
high feature value and blue indicates low feature value).
It is clear from Fig. 11 that high value for Wi-Fi RSSI
feature pushes the model towards making indoor prediction
and low value pushes the model towards making outdoor
prediction. In contrast, low value for LTE feature pushes
the model towards making indoor prediction and high value
pushes towards outdoor prediction. Similarly, Fig. 12 shows
the important feature for prediction in LDA.

D. DEEP NEURAL NETWORK (DNN) MODEL
We implemented a DNN model using the Scikit Learn
package to analyze the classification performance of Neural
Networks. The DNN consists of two hidden layers containing
64 neurons in each layer. We trained the DNN model with
the learning rate of 0.001, and the optimizer used is Adam
with the number of epochs as 100 and batch size as 200. The
test accuracy of the DNN model is 98.7%, and test F1-Score
is 99.1%. DNN is performing on-par with other ML models.
Since this is a simple tabular classification problem, ensemble
ML models are sufficient.

FIGURE 12. LDA: Feature importance.

VI. TEST SCENARIOS
The previous section demonstrated that Random Forest
performed extremely well in the indoor/outdoor classification
task when tested in the conventional way against a training
and test set where the test data set consisted of measurements
from the same environments that were included in the training
data set. In this section, we are interested in testing the
ML model on data collected in environments that were not
included in developing the ML models. To do so, we studied
two different test cases described below. The app was used to
collect data both indoors and outdoors in these environments.
• Location 1, TacoBell is a restaurant, with very
large glass windows facing the street as shown
in Figs. 13a and 13b.

• Location 2, WholeFood is a grocery store, again with
very large glass windows facing the street as shown
in Figs. 13c and 13d.

Table 6 summarizes the classification performance in these
two environments, first without including any of the data
in building the trained model and then adding 20% of the
new data to retrain the ML model. The overall F1-scores
using the ML model trained on the original data were 67%
and 61% in TacoBell and WholeFood respectively. These
improved to 79% and 71% when 20% of the data was
used to retrain the model. Interestingly, we observe that
the TPR (probability of classifying outdoors correctly) was
100% in all cases, while the TNR (probability of classifying
indoor correctly) was quite low. We believe that this is due
to two reasons: (i) in both locations, the large street-side
windows caused the indoor environment to appear more like
an outdoor one in terms of the RF signal levels perceived
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FIGURE 13. Test Cases: TacoBell and WholeFood.

at the phone; and (ii) as we mentioned in Section III, our
data-set has more and diverse outdoor records than indoor
records. From an interference potential perspective, the ML
algorithm performance is actually desirable: an indoor device
near a window or open door has the same interference
potential as an outdoor device as was noted in a recent filing
to the FCC where devices near windows or open doors had
very high interference levels at incumbent receivers [25].

There are two ways to address theML performance in such
scenarios: (i) increase the representation of diverse indoor
environments in the data set. We see that including just
20% of the data from the new environment in the training
set improved classification accuracy, even though this was
a very small percentage (.04%) of the overall training set;
or (ii) create three classes: indoors, indoors near windows and
outdoors. The second approach would be the best to address
the application we are interested in where we use device
environment to determine transmit power levels: a device near
a window could be subject to a transmit power requirement
in between a fully indoor and fully outdoor device. Both
options require creating a more diverse data set, especially
of indoor measurements since indoor environments tend to
be more diverse than outdoor ones. Just as image recognition
performance improved dramatically as image databases grew
larger and incorporated diverse images, we are confident that
as these types of RF data-sets grow, RF based indoor/outdoor
classification will improve as well.

VII. CONCLUSION AND FUTURE WORK
We believe that this is the first comprehensive evaluation of
ML-based indoor/outdoor classification using a very large,
labeled data-set of RF signals spanning a wide range of
frequencies. We did a thorough evaluation of a number
of models and demonstrated excellent performance with
Random Forest. We believe that such methods can be used in
future rule-making to enable devices to self identify as being
indoors or outdoors, thus enabling improved spectrum rules.
We propose to conduct future research as follows:

• We have evaluated only ensemble classification algo-
rithms in this paper. CNNs have proven to be extremely
proficient in image classification tasks and can be
applied to the indoor/outdoor classification problem
by either converting tabular data to an image [26] or
creating heat maps of signal strength and treating them

as images. In future work, we plan to compare CNNs
with RNNs (specifically LSTM).

• Data collection: the diversity of devices and environ-
ments needs to be broadened considerably, since the
current labels are not enough to model the varying signal
conditions in dynamic areas such as stadiums, tall build-
ings, apartments shopping complex and narrow streets.
In the future, we look to create more specialization of
indoors classes since it tends to be more diverse than
outdoors.

• Android APIs have information on the phone model that
our app extracts but we have not used this information
in our study. Classification accuracy could be further
improved by creating different models for different
device types and operators.

• Signal diversity: besides Wi-Fi and LTE signals, we are
planning to add other types of signal measurements
that are available on current phones, such as Bluetooth
[27], [28], and UWB [29]. These were not considered
in this paper due to limited deployments, but in future
these may become more sidespread. By increasing the
type of captured signals, we will have a broader range
of frequencies which may lead to a higher model
accuracy.
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